The Prehistory of the Subsystems of second-order Arithmetic

نویسندگان

  • Walter Dean
  • Sean Walsh
چکیده

This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincaré to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak König’s Lemma, and (iv) the large-scale intellectual backdrop to arithmetical transfinite recursion in descriptive set theory and its effectivization by Borel, Lusin, Addison, and others. * Department of Philosophy, University of Warwick, Coventry, CV4 7AL, United Kingdom, E-mail: [email protected] Department of Logic and Philosophy of Science, 5100 Social Science Plaza, University of California, Irvine, Irvine, CA 92697-5100, U.S.A., E-mail: [email protected] or [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

Second order theories with ordinals and elementary comprehension

We study elementary second order extensions of the theory ID 1 of non-iterated inductive deenitions and the theory PA of Peano arithmetic with ordinals. We determine the exact proof-theoretic strength of those extensions and their natural subsystems, and we relate them to subsystems of analysis with arithmetic comprehension plus 1 1 comprehension and bar induction without set parameters.

متن کامل

Formalizing Forcing Arguments in Subsystems of Second-Order Arithmetic

We show that certain model-theoretic forcing arguments involving subsystems of second-order arithmetic can be formalized in the base theory, thereby converting them to effective proof-theoretic arguments. We use this method to sharpen conservation theorems of Harrington and Brown-Simpson, giving an effective proof that WKL+0 is conservative over RCA0 with no significant increase in the lengths ...

متن کامل

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Rew. Symb. Logic

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017